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A quasi-periodic function, in contradistinction to a periodic function, 

has several periods [I]. Therefore, in the investigation of quasi- 

periodicity it is natural to consider a space of several dimensions. 

In the study of solutions of ordinary differential equations the 

author passes from the given system of equations to a special system of 

partial differential equations [2-41. This makes it possible to reduce 

the problem on quasi-periodic oscillations to the problem of periodic 

oscillations. In this manner, it is possible to characterize quasi- 

periodicity with the aid of boundary conditions. 

In the first part of this work, this method is used for the investi- 

gation of linear systems with quasi-periodic coefficients, and the 

structure of the solutions of such systems is established. In the second 

part, nonlinear systems are considered, 

The author expresses his gratitude to S.L. Sobolev in whose seminar 

the preliminary results of this work were presented and discussed. 

1. Linear systems of equations. 1. Let the equation 

g = P (t) 5, p @I = lb, 0) II In (1-Q 

be given. Here P(t) is a quasi-periodic matrix with a frequency basis 

P(P1, a--t p,) while x(x1, . . . . nn) is a vector. It is known ELI that 
the quasi-periodic function pSk(t) is a diagonal matrix of the periodic 

function Fsk(ul, . . . , u,,J with the periods ak = 2n/Pk in the vari- 

ables uk, i.e. Q(t) = F&, . . . . t). 
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Let D be an operator which acts on the function x(ul, . . . . u,,,) in 

the following way 

We now construct the equation 

Dz = F (q, . . ., urn) 5 

(F (w, . * . , urn) = 11 F,, (~1, . . . , u,,,) [I I”. F (L . . .I t) = p tt)) 
(1.2) 

Equation (1.2) is equivalent to equation 

m n 

(bj = Fj1~1 f. . . + Fj,Z,) 

where .z is a scalar solution function. Thus the solutions of equation 

(1.2) will exist if there exist first integrals of the system 

% du,=du,=...=du,,,=?=.. b _=_ 
n 

If we consider equation (1.2) along the diagonal u1 = u2 = . . . = 

Unl = t then we obtain equation (1.1). 'lherefore, if r(ul, . . . . urn) is 
some solution of equation (1.2), then n(t, . . . . t) is a solution of 

(1.1). It is also easy to see [41 that through each curve that does not 

lie on the (n + l)-dimensional plane u1 = uq = . . . = Us in the (m + n)- 

dimensional space, there passes a unique solution of equation (1.2) 

which exists for all values ul, . . . . un, while through a curve which is 

a solution of equation (1.1) there passes an infinite set of solutions 

of equation (1.2). 

2. Suppose that FluI, . . . . urn) in equation (1.2) is some variable 
matrix (not necessarily periodic). For equation (1.2) one can construct 

a theory analogous to the corresponding theory for equation (1.1). Let 

the vectors 

represent fl particular Solutions of equation (1.2). 

Definition. 'Ihe system of solutions (1.3) will be called a funda- 

mental system if it satisfies the following condition: let &n,, . . . . 

%a) (nk = ++ **., u,)) be a given solution of equation (1.2); then 

there exists differentiable functions Ak(u2 - ul, . . . . urn - ul) (k = 1, 

. . . . n) such that 

$ = A,% + . . . + A&,, 
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Let x(ul, . . . . un) be a matrix which consists of the functions (1.3), 

and let )~(a,, . . . . u,)I be its determinant. 

Reorem 1.1. If Jx(nl, . . ., urn 1 is different from zero for all 

values of uk, then system (1.3) is a fundamental system. 

In what follows we shall call the function f(u, - ur, . . . , urn - ul), 

which depends on the differences uk - uI, the function which is constant 

along the diagonal. Analogously, we shall call a matrix to be constant 

on the diagonal if its elements are functions which are constant on the 

diagonal . 

If the matrix F in equation (1.2) is constant on the diagonal, or 

constant everywhere, then the matrix 

wl + . . . + a,u, 
x = exp 

a1 + . . . + a, 
F (aj = const) 

I 

will be a fundamental matrix of the solutions of equation (1.2). Hereby 

the structure of the solutions of equation (1.2), with a matrix F that 

is constant along the diagonal or constant everywhere, has been com- 

pletely established. 

3. If one subjects equation (1.2) to the transformation 

x = B (ul, . . ., u,) Y (1.4) 

where R is a nonsingular matrix, then one obtains equation 

,9Y = [B-‘FB - B-‘DB] Y (1.5) 

*Suppose that the nonsingular matrix B, together with the matrix DB, 

be bounded for all positive values of ul, . . ., u,,,, that lie on the 

diagonal. A matrix B which possesses this property will be called a 

Liapunov matrix. 

If B@, . . . . un) in the representation (1.4) 

constant on the diagonal or constant everywhere, 

will take on the most simple form DY = B-‘FB Y. 

is a matrix that is 

then equation (1.5) 

Definition. Equation (1.2) will be said to be reducible, if it can 

be transformed by means of the transformation (1.4) with a Liapunov 

matrix B into an equation with a matrix that is constant on the diagonal 

or constant everywhere. 

It is easy to obtain the theorem of Erugin 151. 

Theorem 1.2. In order that equation (1.2) may be reducible it is 
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necessary and sufficient that the fundamental system of the solutions 

of this equation be representable in the form 

z (q, * - -2 urn) = B (~1, . . ., hn) exp 
[ 

cwl+ . .+amUm 

al+-..+a, 
A 1 

where R is a Liapunov matrix, ak = const and A is a matrix that is con- 

stant on the diagonal or constant everywhere. 

Theorem 1.3. If the coefficients Fsk in equation (1.2) are periodic 
function with the same real period o in all the variables uk, then equa- 

tion (1.2) is reducible with the aid of a periodic matrix. 

lhe proofs of these theorems will not be given; they can be obtained 

easily from known proofs for systems of ordinary equations. 

If one considers equation (1.2) on the diagonal uk = t, then theorem 

1.3 yields a known theorem of Liapunov on the reducibility of equation 

(1.1) with periodic (with a cormron period) coefficients. 

We note that if zl(ul, . . . . urn) is a fundamental matrix of solutions 
of equation (1.2), then the matrix 

where R is a nonsingular matrix constant on the diagonal, is also a 

fundamental matrix of solutions, and all fundamental matrices of solu- 

tions of equations (1.2) are contained in formula (1.6). 

4. Suppose that in equations (1.2) F(ul + ol, . . . . urn + am) = F(u,, 
. . . . un). Then, along the diagonal, equation (1.2) will yield, as was 

already mentioned, equation (1.1) with a quasi-periodic matrix p(t) = 

F(t, . . . . t). 

Let x(ul, . . . . u,,,) be a fundamental matrix of solutions of equation 

(1.2). lhen z(ur + wl, . . . . u, t on) will also be a solution of equation 

(1.2) because of the periodicity of the matrix F, and on the basis of 

what was said above, we have 

z (q + 01, . . ., &?a + ona) = z.z (Ul, . . ., 4n) c (1.7) 

where C is a matrix constant on the diagonal or constant everywhere. 

In this manner we obtain a relation which is analogous to the one 

which permitted Floquet [51 to determine the structure of the solutions 

of systems of ordinary differential equations with periodic coefficients. 

Theorem 1.4. If equation (1.2) is such that the matrix C in relation 

(1.7) is everywhere constant, then this equation is reducible to an 
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equation with a matrix that is everywhere constant by means of a 

periodic matrix. 

Indeed, let the everywhere constant matrix B be such that 

C = exp 
[ 

wh+...+a,~, 
al + . . . + am 

B 
1 

(aj = con&) 

Let us consider the matrix 

K (ul, . . ., urn) = exp al~l~*..,. :y B ] x-l (ul, . . ., u,,,) 
m 

Then K(ul + al, . . . . urn + 0,) = K(ul, . . . . urn), i.e. the matrix f! is 

periodic. Let us set 

Y=Kx=exp 
alul+...+amU, 

al+...+a, 
B 1 

?hen DY = BY. We have a converse to the last theorem. 

Theorem 1.5. If equation (1.2) is reducible to an equation with an 

everywhere constant matrix by means of a periodic matrix, then the 

matrix C in relation (1.7) will be everywhere constant. 

Indeed, suppose that by means of the transformation n =BY, where R 

is a periodic matrix, equation (1.2) is reduced to the form DY =.iY, 

where A is a matrix that is everywhere constant. 'Ihen we obtain suc- 

cessively 

Y = exp 
wl+...+cr,u, 

al+...+% 
A , 

1 
x =Bexp 

alul+...+amum 
A 

1 al+...+a, 

and, hence, everywhere the matrix 

C = exp 
[ 

am+...+a,~, 
al+...+a, 

A 
1 

= const 

Applying the obtained result to equation (1.1) we obtain the next 

theorem. 

7heorem 1.6. In order that equation (1.1) may be reducible, by means 

of a quasi-periodic matrix, it is necessary and sufficient that in rela- 

tion 

2 (t + or, . . ., 1 + om) = x (t, . . ., t) M 

the constant matrix W be independent of the period wk. 

If one studies the structure of the solutions of equation (1.2) with 

a periodic matrix F(u,, . . . . u,,,), then one investigates at the same 

time the structure of the solutions of equation (1)l) with a quasi- 
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periodic matrix P(t) = F(t, . . . . t). Rut the structure of the solutions 

of equation (1.2) is determined completely by the matrix C in relation 

(1.7). 

We shall point out one auxiliary proposition, In order that the 

differential function GGl(u,, . . . . urn) satisfy the condition 

it is necessary and sufficient that 

Da+ (u,, . . ., Urn) = K (IQ, . .I Urn) f!.9) 

where K is a periodic function of the variables uj of period oj. In 

particular, if K = 0, then @, is a function that is constant on the 

diagonal. 

Indeed, suppose that (1.9) is valid. Then 

Since any differentiable function of the form p = p(uz - el, ..-, 

Urn - ul) is a solution of DZ = 0, the sufficiency is proved. 

Let us assume that (1.8) is valid. Then D(DI(ul + wl, . . . . tan f an) = 

Da++ .“I urn)* and the necessity is also established. 

AnaIogously , in order that (92(u1# . . ., uB) satisfy the condition 

Qz lur + Ui, I . , ) urn + mm) -- 

= 02 (u,, . . a 1 urn) + p (u2 - 4. . . ., u, - 14 Q?, (UI, . . .I urn) (l.iO) 

where (01 satisfies (1.8), it is necessary and sufficient that 

I) fR~D~x~ = Kr? (l.il) 

where Kl f 0 and Kp are periodic functions. From (1.11) it follows that 

if 0, is to satisfy condition (1.10) it is necessary and sufficient that 

D @2 = Ki’+, where Kl is periodic, while N, is a function of the type @,. 

In particular if K2 = 0, then the function Nl will be constant on the 

diagonal. Continuing in this manner, we obtain the result: in order that 

the function Qs(ul, . . ., urn) may satisfy the condition 

CD, (a1 +oi, * * ., urn + B&J = 
-= Qs (IQ, . I ., u,l + p (u2 - m, . . .'Urn - 4) a,_* (U,, . . .3 u,) 

it is necessary and sufficient that 

D@, = KN,r (~1, . - ., u,J 

where K is a periodic function, and Ns_l is a function of the type OS-l. 
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Let us consider the possible structures of the matrix C in the rela- 

tion (1.7). 

1. The matrix C is everywhere constant. Then it follows from Theorem 

1.4 that 

[ 

a1u1+ * . . + amum 
= f&r * . -9 urn) = R (ul, . . ., u,) exp 

aI +. . . +a, 
A 1 (aj --= cons@ 

where B is periodic and A is an everywhere constant matrix. For (1.1) 

this yields 

2 (t) = U) (t) exp (tA) (1.12) 

where Q(t) = B(t, . . . . t) is a quasi-periodic matrix. 

In this manner we obtain a result which is similar to the results of 

Floquet for equation (1.1) with a periodic matrix P(t). This case has 

been investigated at length in [41. 

2. The matrix C = [Al, . .., A,], where hk is a function that is con- 

stant on the diagonal. In this case we obtain the relation 

zjf,. t"l +ol+ ' * - v u, f am) = hk =jk (ul, . * * 7 Um) 

which in view of the auxiliary proposition, is satisfied by functions 

of the type [bjk(ul, . . . , u,& exp [Rk(ul, . . . * u,)] , where ojk is 

periodic in the variables ai with periods oi, while the Rk are functions 

satisfying condition (1.9). In particular 

R,= Mh(2,ue--~1-t_z,...,~m-u~+2)d~ 
s 
0 

where the Nk are periodic functions. For equation (1.1) this yields 

z# tt) = ‘Pjk (6 exp fmk (t)] or 
0 

(‘Pjk (I) ‘= ‘jr ttl * * -I l)? 2, (t) = Mk (t, . . :, t) 

where the mk’(t) are quasi-periodic functions. If 

where the yk(t) are quasi-periodic functions. then we obtain again the 

form (1.2). while if the vk(t) are not quasi-periodic, we obtain forms 

of the solutions of equation (1.1) which do not coincide with the theory 

of Floquet. In the last case equation (1.1) is not reducible, but if the 

characteristic numbers (of Liapunov) for this equation and for its 

adjoint equation are denoted by ak and Pk. respectively, then ak +Pk=O. 
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i.e. equation (1.1) is the COrri?ct one [51. 

3. The matrix 

IX, 1 o...o 

where the hk are functions that are constant on the diagonal, Relation 
(1.7) now has the form 

3 fur for, . . . , urn f Wrn) = 2‘ (Ul, . . . , u,) IZ,* (A,), . . . , 1 
qP 

(lLp)f 

that is, it will consist of several groups. 

For example, the group which corresponds to hk will be 

X&j (141 + 01, . . .V u, + mm) f Xsj_1 (“l 1 * * * I UrnI -t A, “$j (Ui, * * *, UrnI 

(S = 1, <. I, 7%; .t = 1, * qf;) 

In the same way we have from the auxiliary proposition 

where @‘s;(~l, . . . . urn) is a periodic function in the variables uk with 

periods Ok, while the functions AIS,, . . . , M 
sqk-l 

satisfy the conditions 

DM,, = al, I) M,, = MV31T . . - , D.tis,ls_l = a~~_~N~~~_~ 

where the ui are periodic functions, while the NSi are functions of the 

type MS.. 

The functions Rk satisfy condition (1.9). For equation (1.1) this 

yields 

Wh@X’e the ‘P,i(t) and the rk ‘(t) are quasi-periodic functions, and the 
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functions hSi(t) satisfy the following conditions: hSi’(t) is a quasi- 

periodic function, hSZ ‘(t> is the prohuct of a quasi-periodic function 

by a function whose derivative is quasi-periodic, and so on. 

Equation (1.1) is again the correct one. Thus we have given a broad 

class of correct equations which, however, are not reducible in general. 

2. Nonlinear systems of equations. 1. Let us consider the 
equation 

dx I dt = f (t, x) + aP (tl x, a) (2.1) 

where f(fl, . . ., f,), FtF,, . . ., F,), and x(x1, . . ., xn) are vectors. 
lhe functions fstt, x1, .-., nn) and F,(t, xl, . ..* xn, a) are defined 
for all values of x1, . . ., xn which lie in some region C: of the space 
of these variables. With respect to the independent variable t, these 
functions are quasi-periodic with a common frequency basis p(pr,. . . ,/3,). 
The quantity a is a small parameter. In accordance with the proposed 
method of investigation, we must consider along with equation (2.1) also 
equation 

Dr =: A (~1, . . ., am, 2) + CZB (~1, . + ., u,, Z, a) (2.2) 

A (t, . . ., t, 4 = f ft. r), B (t, I . ., t, 2, a) = F (t, 2, af 

The functions As(ul, . . ., tin, x) and B(u,, . . .* Us, x. a) are 
periodic in the variables uk with the periods +$ = 21r/pk. In an analo- 
gous way, as above, we see that if we consider equation (2.2) on the 
diagonal uk 

(5 

= t, then we obtain equation (2.1) and if x(x1, . . ., x,,) 
= Xs(Ul, . . . . u,)) is some solution of equation (2.2) then it will 

generate on the diagonal a solution xS(t, .“., t) of equation (2.1). 

Conversely, through every solution of equation (2.1) there pass an 
infinite number of solutions of equation (2.2). 

Equation (2.2) is equivalent to a linear equation; therefore, 
through every curve that does not lie in the plane u1 = . . . = ulfl there 
passes a unique solution of equation (2.2). We note that if equation 
(2.2) has a periodic solution of period Ok in the variables uk, then 
equation (2.1) has a quasi-periodic solution with the frequency basis 6. 

Let US consider the equation 

Dz = -4 (ur, * . .) um, 5) (2.3) 

which we shall call the generating equation, and let us assume that 
this equation has a periodic solution 
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of period ak in the variables uk, and that this solution satisfies the 
initial conditions 

where y,(ux) is a periodic function of period wr. 

‘we shall try to find conditions under which system (2.2) admits a 
periodic solution which will become the generating solution (2.4) When 
a= 0. 

Let us denote by 

Lz, (Qr * . ., um7 rli (%I a)9 - 0 -3 11, (%Y a), 4 

the solution of equation (2.2) with the initial conditions 

X8 
( % 01 %.& I. .*z a,, q1 &r a), * f -1 rlnf% 011, a) = r/J% a) fz.f;) 

It is obvious that we have 

Xu(fJlr . . ~9 urn,& (UJ, - -f 9%l,fUJ* 0) s9;)g(ult * - at UrnI f2+6) 

In [61 it is shown that if this solution is to be periodic with 
periods 02, *.a, 8, in the variable u2, . . ‘, a,,, then it is necessary 
and sufficient that the following conditions be fulfilled 

Because of (2.6), conditions (2.7) are satisfied if a = 0, qs(u,,O) = 
q~a(~t~) since the generating equation will be periodic. 

Therefore, if condition 

is fulfilled, then, if a is small enough, equations (2.7) will have one 
and only one solution qs(tilt a) for which q3(uI’ 0) = vV,(ur). 

Substituting this solution into the function xs, we obtain a solutian 
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of (2.2) which is periodic in u2, . . . . u,,, and reduces to the generating 

one for a = 0. Let us find the condition under which the solution will 

be periodic in ul. Suppose that 

where e,(u,) is a periodic function of period a2. Here f)s(uz) = vs(ul) 

if 02zz1 = oluz. Let us denote the solution of equation (2.2) by 

5, @I, * * *, urn, 51 (ua, a), - -*‘I E, (uzv a)*aJ 

with the initial condition 

Here 

xs @I, * * .( urnq 9 1 (u,), * l -, 0% (U,), 0) z ‘p, (&IV * * -s Urn) 

In order that the solution xs may be periodic of periods ol, 03, 

. ..) om in the variables ul, ugr .*., u, it is necessary and sufficient, 

just as above, that the following conditions be fulfilled 

6, (% E 1 @z, 4, * * ‘,%, @*t 4, 4 = 

I_z &I 
( 

01 

ot 
u,+cu,,u,,~u,+03,...,~ EEZ+Ona,%l,".r %,t a) - 

- %,@,, 4 = 0 (2.9) 

Ornditions (2.9) will be satisfied for a = 0, cs(u2, 0) = $,(u,). 

Therefore, if 

(2.10) 

then equation (2.9) will have, for small enough 

solution ~s(u2, a) for which c(uBf 0) = 6Juz). 

tion into the function xs, we obtain a solution 

is periodic in ul$ us’ . . . . a,, and which for a 

generating solution. 

a, one and only one 

Substituting this solu- 

of equation (2.2) which 

= 0 reduces to the 

I3ut the solutions xs(ul, . . . . Us, qlt . . . . q,, a) and xJul, .,., unt, 

Cl, **St &l a) of equation (2.2) coincide when u~/J~= uz/oa = . . . = 

u,h,1 and, because of the uniqueness of the solution, they coincide 

also for other values of ul, . . . . u,. rlxus, if conditions (2.8) and 

(2.10) are satisfied simultaneously, the solution xs(ul, . . . . uIR, nl, 

. . . . in, a) of equation (2.2) will be p eriodic in all its variables, and 
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the functions n, (ul, a), which are periodic in u1 if a = 0, will be 
periodic also for small enough a, i.e. the following theorem is true. 

Theorem 2.1. If conditions (2.5) and (2.10) are fulfilled, then equa- 
tion (2.2), for small enough a, will have one and only one periodic 
solution which becomes the generating solution when a = 0. 

Along the diagonal uk = t, the functions (2.41, i.e. vS(t, . . . . t), 
represent the solution of the equation 

dz,‘dt = f (t, x) (2.11) 

This leads to the next result. 

Theorem 2.2. If equation (2.11) has a quasi-periodic solution xS = 

‘PJt, se*, t) and if hereby the determinants 

1 

a (n* . *. v&J 

1 { 

a (61, . . ,6,) 

a oh* * . . 8 tl,) a=fj, q8=JIs (L) ’ a (El* . . . 7 5,) 1 a=i), F;,dl, (t) 

are different from zero, then equation (2.1) has a quasi-periodic solu- 
tion which becomes the generating one when a = 0. 

2. Let us assume that the generating equation (2.3) has a family of 
periodic solutions 

rp, (~1, . - ., a,, h (at-- ~1. . . ., u, - =J) (szf,..., n) (2.12) 

which depend on an arbitrary periodic function h of periods Ok - r+, 
and that the considered generating solution belongs to this family and 
corresponds to the function h = II*. Let us denote, as above, by x,(ul, 
. ..) nap nl(ul, o), . . . . nn(ult o), a) the solution of equation (2.2) 
with the initial conditions (2.5). ‘Ihen, just as above, the conditions 
for periodicity of this solution in uZ, . . . . u,, will have the form (2.7). 
‘lhese conditions will be satisfied for the generating solution, that is, 

for 

lfut in contradistinction to the preceding case, the conditions (2.7) 

will be satisfied also when 

a = 0, 18(U1,0) = ‘Ps(%~%. * .Y? Ul' 111) 
(p=h[(!p) Ul, . . ,, (y)ul]) 

since all solutions (2.12) of the generating equation (2.3) are periodic. 
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In other words, equations (2.7) have, for a = 0, not only one solution, 

as earlier, but a family of solutions 

which depends on an arbitrary function n(u,). 

!3ecause of this, the functional determinant 

a (71, . . . . m) 
a ml, . . ., %I) 

will necessarily have to 

for a = 0, q, = ‘ps ul,z ul, . 1 2 

( 

w, p* 

1 

be zero. 

Therefore, we shall call the periodic solution (2.4) of equation 

(2.3) an isolated solution if the determinant (2.8) is different from 

zero. 

‘lhe corresponding quasi-periodic solution p,(t, . . . . t) of equation 

(2.11) will in this case also be called an isolated solution. 

‘Thus Theorem 2.2 will take on the following formulation. 

For every isolated generating quasi-periodic solution, system (2.1) 

for sufficiently small a admits one and only one quasi-periodic solution 

which reduces to the generating one when a = 0. 

Therefore, in the case of an isolated generating solution, there 

exists a complete correspondence between systems (2.1) and the simpli- 

fied system (2.11). 

In order to clear up the question on the existence of a periodic 

solution of equation (2.2) in the case of a family of periodic solutions 

(2.12)s we exclude from equation (2.7) some (n - 1) terms of the quanti- 

is can always be done when at least one of the 
r-f;-r;l;f’,,dJ”, “’ 

1 of the determinant (2.8) is different from zero, 

which we shall assume to be the case. 

S uppose that for the sake of definiteness 

Under this conditions the first n - 1 equations of (2.7) have a solu- 

tion for ql, * . . ) qn-lp 
in which these quantities are functions of ul, 

0: and q,,, which become 
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a = 0, %a = ‘Pn(U1,~U1,. * *> 

Substituting these quantities into the last 

we obtain for qn(ul, a) one equation which can 

@ = M (rln) + oN (%I, a) 

%w*j 
one of equations (2.7) 

be expressed in the form 

= 0 (2.13) 

Since the system (2.7) has for a = 0 the solution 

% ($9 0) = cps @IT 2 %r * - *v 2 Ul, p) (s = I,..., n) 

which depends on the arbitrary function u(u,), equation (2.13) must have, 

under these conditions, one solution ‘7, which depends on an arbitrary 

function I . This is possible only if the function IV vanishes identi- 

cally. Thus equation (2.13) (after division by a) takes on the form 

fv (%I, a) = 0 (2.14) 

For the existence of a periodic solution it is necessary and suffi- 

cient that equation (2.14) have a solution for q, which has to reduce to 

(Pn (U,, 2 Ur, . . ., 2 Ul, p*) for a = 0 

For this it is necessary, first of all, that the following relation 

holds 

P (p*) = N(cp,(u,,$, . . .‘+“p*) 3 0) = 0 (2.25) 

Thus we have obtained a necessary condition which the function p*(u,) 

of the generating solution must satisfy in order that there may corre- 

spond to it a periodic solution of the complete system (2.2). If in 

addition to condition (2.15) we have also the condition 

i I g #0 for a=O, ‘In = (Pn (UI, 2 nr, . . .’ 2 Ul, p*) 

then equation (2.15) will have a unique solution for n, of the required 

type* and then, as was indicated above, there will exist a periodic 

solution of equation (2.2). 

We note that if the function p*(u,) is known, then the functions 

h*(u, - Ill, . . . . u, - ul) can be determined in a unique way since 

llh* = 0. 

Along the diagonal uk = t, the functions (2.12), that is, 
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represent a family of quasi-periodic solutions of equation (2.11) which 

depend on an arbitrary parameter 1. 'Ihus we have obtained the next 

theorem. 

Theorem 2.3. In the infinite set of generating quasi-periodic solu- 

tions in the family (2.16) of equation ( 2.11) there are only certain 

ones which can actually correspond to quasi-periodic solutions of the 

original system (2.1); namely, only those solutions for which the para- 

meter I* takes on certain definite numerical values. 

'Ihe method used in the investigation of equation (2.1) can be used 

also for the investigation of the autonomous equation 

2 = f (4 + aF (z, a) 

'lhe application of this method shows that the theory of a small para- 

meter of Poincard for periodic solutions [71 can be used, without 

essential modifications, for the study of quasi-periodic cases. 

1. 

2. 

3. 

4. 
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